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1. Introduction

Pests are living organisms (plants or animals) that are injurious or cause loss or irritation to either plant 
or animal. Most farmers employ the use of chemical insecticides which has side e� ects on plants, humans 
and the environment at large in controlling pest, Aderinto et.al. (2013), Micheal (2008), Andres et al. 
(1979). And because of these harzard e� ects,there is need for alternative methods of controlling pest.

Biological control  involves the use of parasitoids, predators and pathogens to maintain the population of 
pest at a level lower than it would without natural enemies. Some reseachers have studied the mathematical 
model as well as biological control of insect pests.  Aderinto et.al. (2013) qualitatively studied biological 
pest control. Mustiya et al. (2014) worked on development and reproduction of cassava pests at di� erent 
temperature. Picart et. al.(2011) studied optimal control of insect pest populations. Ra� kov and Balthazar 
(2005), and Ra� kov et al. (2008) studied mathematical modelling and control of pest population. Goh 
et.al (1977) worked on the optimal control of prey predator system. Herren and Neuenschwander(1991) 
looked at the biological control of cassava pest, to mention a few.

However, the present e� ort is to consider the the existence and uniqueness of the solution of the mathematical 
model of biological control of two major pests of cassava, called green spider mite (Mononychellus tanajoa) 
and cassava mealybug (Phenacoccus manihoti) through the use of their predators known as the predatory 
mites namely Typhlodromalus aripo and Epidinocarsis lopezi respectively. � e optimallity system for the 
biological control of cassava pests was established, the uniqueness and existence solution to the system was 
veri� ed, and � nally numerical application was presented in an attempt to minimize the pest population 
below injury level and maximize cassava output.
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2.Mathematical Model

Let the population of the prey and predator species respectively be represented by   M1(t), M2(t) and T1(t), 
T2(t). As presented in the � ow diagrams � gures 2.1, 2.2a, and 2.2b. 

� e following assumptions were made: 
i. � e prey has unlimited supply of food.
ii. � e predators depends completely on its prey as the only source of food and
iii. Each prey has no other threats except for its predator being studied
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With the assumption that the pray have unlimited food supply, when there are no predator, the 
population of prey grows rapidily(exponential growth) and because of the limited time scale, we 
have  
  

    .= 1
1 aM

dt
dM     (1) 

 and  

 .= 2
2 bM

dt
dM   (2) 

for the two species respectively, where 0>, ba , 0= 21 TT . 
Also, the predator dies out exponenially in the absence of the prey(exponential decay), thus   

.= 1
1 cT

dt
dT

  (3) 

 and  
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 where 0>, dc , .0=21 MM   
The outcome of interactions between prey and predator are said to be proportional to the product 
of their population. And this in turn leads to increase in number, size, value and strength of the 
predator by MT , and contrary for the prey by MT with respect to each of the species.  
Thus, the model is mathematically represented as;  
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 Parameters used are defined in table 2.1. 
 Table 2.1 : Definition of Parameters (Rafikof et al.2008 and Aderinto et al 2013) 
Symbols Definitions  

1M , 2M  Population of prey species 1 and 2 respectively To be observed 

1T  , 2T  Population of predator species 1 and 2 respectively To be observed 
a  , b  birth rate of prey specie 1 and 2 respectively 0.17,0.116. 
c  , d  death rate of predator specie 1and 2 respectively 0.00017. 

1 , 2  death rate per interaction of prey species 1 and 2 
respectively(predator attack rate) 

0.20,0.20. 

1  , 2  growth rate of predators species 1and 2 respectively 0.0085,0.0085. 

1u  , 2u  control rate for  species 1 and 2 respectively .101,0 21  uu  
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4. Numerical Implications

� e numerical solutions to the system was obtained using the fourth order Runge Kutta method with 
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Ra� kof  et al. (2008) and Aderinto et al. (2013). 

8 
 

4. Numerical Implications 
The numerical solutions to the system was obtained using the fourth order Runge Kutta method with 
the use of the MATLAB mathematical package, Lucas(2011). The following parameter values were 
used, Rafikof  et al. (2008) and Aderinto et al. (2013).  
a = 0.17, b = 0.116,  21 =  = 0.20, c = d = 0.00017, 21 =   = 0.0085, .101,0 21  uu  
The state equation then becomes 

 
.0.1160.00850.00850.00017=

0.170.00850.00850.00017=
0.170.200.116=

0.1160.200.17=

212222

121111

12222

21111

uTTMTT
uTTMTT

MTMMM
MTMMM















              (21) 

21 ,uu  were taking radomly between 0 and 1 to observe the behavior of the model. 
Using different values of  21.0,94.0,60.01 u  and 2 0.50,0.87,0.19u  , the results is presented 
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Figure 2: Graph of M1, M2, T1, T2 with u1 = 0.94, and u2 = 0.87 

Figure 3: Graph of M1, M2, T1, T2 with u1 = 0.21, and u2 = 0.19 
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5.Discussion of the Result 
The results obtained from the graphs shows that as the predator population increase, there is 
decrease in the prey population of the two species. Most especially when u1 =0.6 and  u2 =0.5.This 
shows that the population of the pest can be minimized below injury level using biological control 
approach. 
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the prey population of the two species. Most especially when u1 =0.6 and  u2 =0.5.� is shows that the 
population of the pest can be minimized below injury level using biological control approach.

6. Conclusion

� e paper presents the mathematical model of the biological control of two species of  cassava pests. � e 
model was analysed using Pontryagin Maximum/Minimum Principle and optimality conditions, the model 
solution was found to be exist and unique and the optimal e� ort necessary to reduce the population of the 
two species was determined. Numerical data were employed to test for the validity of the model using Fourth 
order Runge Kutta method. And  the result obtained shows that pest population of the two species can be 
minimized to a considerable extent(below injury level) as a result of the introduction of their respective 
predators.
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